Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We evaluated whether teaching the public about the “critical zone”–the Earth’s outer skin, critical to all life— via a digital serious game can affect adults’ systems thinking about the environment and support policies to protect the environment. An experiment (N = 152) compared the effects of playing “CZ Investigator” versus viewing a static website on systems thinking about the Food-Energy-Water (FEW) nexus and support for relevant public policies. The serious game had the strongest effects on our outcomes of interest for those participants with less past science education. For these individuals, the serious game, relative to the static website, increased perceptions of the strength of interconnections across food, energy, and water systems ( p < .01) and support for policies that regulated human impacts on the environment ( p < .01). Mediation analysis revealed that increases in systems thinking explain increases in policy support. This group of users also indicated that the game was easier, more enjoyable, and more effective for learning than the website. Mediation analyses also revealed that perceived learning effectiveness was a stronger mediator than ease and enjoyment effects of the game on systems thinking and policy support. These results are valuable for environmental education because understanding interconnections within complex systems is vital for solving environmental problems, particularly for learners with less background in science.more » « less
-
null (Ed.)Communicating and understanding climate induced environmental changes can be challenging, especially using traditional representations such as graphs, maps or photos. Immersive visualizations and experiences offer an intuitive, visceral approach to otherwise rather abstract concepts, but creating them scientifically is challenging. In this paper, we linked ecological modeling, procedural modeling, and virtual reality to provide an immersive experience of a future forest. We mapped current tree species composition in northern Wisconsin using the Forest Inventory and Analysis (FIA) data and then forecast forest change 50 years into the future under two climate scenarios using LANDIS-II, a spatially-explicit, mechanistic simulation model. We converted the model output (e.g., tree biomass) into parameters required for 3D visualizations with analytical modeling. Procedural rules allowed us to efficiently and reproducibly translate the parameters into a simulated forest. Data visualization, environment exploration, and information retrieval were realized using the Unreal Engine. A system evaluation with experts in ecology provided positive feedback and future topics for a comprehensive ecosystem visualization and analysis approach. Our approach to create visceral experiences of forests under climate change can facilitate communication among experts, policy-makers, and the general public.more » « less
-
Virtual and immersive virtual reality, VR and iVR, provide flexible and engaging learning opportunities, such as virtual field trips (VFTs). Despite its growing popularity for education, understanding how iVR compared to non-immersive media influences learning is still challenged by mixed empirical results and a lack of longitudinal research. This study addresses these issues through an experiment in which undergraduate geoscience students attended two temporally separated VFT sessions through desktop virtual reality (dVR) or iVR, with their learning experience and outcomes measured after each session. Our results show higher levels of enjoyment and satisfaction as well as a stronger sense of spatial presence in iVR students in both VFTs compared to dVR students, but no improvement in learning outcomes in iVR compared to dVR. More importantly, we found that there exists a critical interaction between VR condition and repeated participation in VFTs indicating that longitudinal exposure to VFTs improves knowledge performance more when learning in iVR than through dVR. These results suggest that repeated use of iVR may be beneficial in sustaining students’ emotional engagement and compensating the initial deficiency in their objective learning outcomes compared to other less immersive technologies.more » « less
An official website of the United States government
